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NOTES ON HARMONIC ANALYSIS PART II:

THE FOURIER SERIES

KECHENG ZHOU AND M. VALI SIADAT

Abstract. Fourier Series is the second of monographs we present on harmonic analysis. Har-

monic analysis is one of the most fascinating areas of research in mathematics. Its centrality

in the development of many areas of mathematics such as partial differential equations and

integration theory and its many and diverse applications in sciences and engineering fields

makes it an attractive field of study and research.

The purpose of these notes is to introduce the basic ideas and theorems of the subject to

students of mathematics, physics, or engineering sciences. Our goal is to illustrate the topics

with utmost clarity and accuracy, readily understandable by the students or interested readers.

Rather than providing just the outlines or sketches of the proofs, we have actually provided

the complete proofs of all theorems. This approach will illuminate the necessary steps taken

and the machinery used to complete each proof.

The prerequisite for understanding the topics presented is the knowledge of Lebesgue mea-

sure and integral. This will provide ample mathematical background for an advanced under-

http://arxiv.org/abs/2206.05105v1


2 KECHENG ZHOU AND M. VALI SIADAT

Clearly, F(x) = cos x + i sin x satisfies F(x) = χ(eix) for all x ∈ R.

Definition 1.2.

Lp(T) = { f defined on T :

∫

| f |pdσ < ∞},

where
∫

| f |pdσ =
∫ π

−π
| f (eix)|p dx

2π
=

1

2π

∫ π

−π
|F(x)|pdx.

Theorem 1.1.

Lp(T) ⊃ Lr(T), if p < r, that is || f ||p ≤ || f ||r.

Proof: Using Hölder’s inequality, we have: (q = r/p > 1)
∫

| f |pdσ =
∫

| f |p · 1dσ ≤ (

∫

(| f |p)qdσ)1/q(

∫

1q′dσ)1/q′ = (

∫

| f |rdσ)p/r < ∞,

where 1
q
+ 1

q′ = 1.

Definition 1.3. If f ∈ L1(T ), define Fourier coefficients of f as follows: for n = 0,±1,±2, · · · ,

an( f ) =

∫

fχ−ndσ =
1

2π

∫ π

π

F(x)e−inxdx.

We now formally introduce the series

f (eix) ∼
∞|e.
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Proof: (1) is trivial. As to (2), let

f (eix) ∼
∞

∑

n=−∞
an( f )einx

be the Fourier series of f
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Theorem 1.8. If f ∈ L1(T ) and
f (eix)

x
is integrable on (−π, π), then

N
∑

n=−M

an( f )→ 0 as

M,N → ∞ (independently).

Proof: By the hypothesis,

g(eix) =
f (e2ix)

sinx
∈ L1(T ).

(Note: the behavior of g near ±π is analogous to that of
f (eix)

x
near 0). Rewriting

f (e2ix) =
(eix − e−ix)g(eix)

2i

and integrating against χ−2ndσ, we get

2ian( f ) = a2n−1(g) − a2n+1(g), ∀n.
Hence, (telescoping sum), as M,N → ∞,

2i

N
∑

−M

an( f ) = a−2M−1 − a2N+1 → 0.

(It is worth noting that the gist of the proof is considering f (e2ix) and ending up with a

telescoping sum.)

Corollary 1.2. If f ∈ L1 and f satisfies Lipschitz condition at eit, then the Fourier series of f

converges to f at that point. That is,
∑

an( f )eint → f (eit).

Proof: Without loss of generality, we may assume that t = 0 and f (1) = 0 and show that
∑

an( f )→ 0.

Assume that f satisfies the Lipschitz condition at eit, that is, there is a neighborhood of t

so that for any x in that neighborhood, | f (eix) − f (eit)| ≤ K|x − t|α for some 0 < α ≤ 1. In our

case of t = 0 and f (1) = 0, this means that | f (eix)| ≤ K|x|α, for x close to 0. Therefore,
f (eix)

x
is integrable on (−π, π).
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Since f − g = 0 on some interval, f − g satisfies Lipschitz condition at each interior point of

that interval. Therefore,
N

∑

−M

an( f − g)χn → 0.

This completes the proof.

Theorem 1.10. Suppose f (eix) ∈ L1(T ) and
f (eix) + f (e−ix)

x
is integrable on (−π, π). Show

that
N

∑

−N

an( f )→ 0 as N →∞.

Proof: Let g(eix) be such that

f (e2ix) − f (e−2ix) =
1

2i
(eix − e−ix)g(eix).

Note that g is integrable on (−π, π) by the hypothesis. Integrating against χ−2ndσ we have

2i(an( f ) − a−n( f )) = a2n−1(g) − a2n+1(g).

Adding up these equalities for n = 0,±1, · · · ,±N we have

2i

N
∑

−N

(an( f ) + a−n( f )) = 4i

N
∑

−N

an( f ) = a−2N−1(g) − a2N+1(g)→ 0, as N →∞.

It is worth noting that, under the hypothesis of the theorem, it is not necessarily true that
∑N
−M an( f ) → 0 as N,M → ∞ independently. For example, let f (eix) = −1 on (−π, 0) and

= 1 on (0, π). Then an( f ) = −i
nπ

for n odd, = 0 for n even and

f (eix) ∼
∑ 1

πi
(
1 − (−1)n

n
).

Clearly,
∑N
−N an( f ) = 0 for all N. However, if M = 2N and N = 2k then,

M
∑

−
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Proof:
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For 1 < p < ∞,
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and

|J| ≤ 2M

∫

|t|>δ
en(t)dσ(t)→ 0

as n→ ∞.

Now let f ∈ Lp and 1 ≤ p < ∞. For continuous f , the uniform convergence of en ∗ f to f

implies convergence in Lp. Let Tn( f ) = en ∗ f . Then Tn a linear operator from Lp(T ) → Lp(T )

such that ||Tn( f )||p ≤ ||en||1|| f ||p, i.e., ||Tn|| ≤ 1. Note that Tn( f ) converges in Lp(T ) for every

f ∈ C(T ) and C(T ) is dense in Lp(T ). Therefore, Theorem 1.4 asserts that Tn( f ) converges

in Lp(T ) for every f ∈ Lp(T ) and if we define T ( f ) = Lp − lim Tn( f ) then T is a linear

operator on Lp with bound ≤ 1. We prove that T is an identity on Lp. In fact, T ( f ) = f for all

f ∈ C(T ) and C(T ) is dense in Lp(T ). Let f ∈ Lp and let fk ∈ C(T ) with fk → f in Lp. Then

T ( f ) = lim T ( fk) = lim fk = f for all f , that is, Lp − lim en ∗ f = f for all f ∈ Lp.

Theorem 2.7. T
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Let en be an approximate identity in L1(T ) so that en’s are continuously differentiable. Then

for every f ∈ L1, en ∗ f is continuously differentiable. Let f be such that an( f ) = 0 for all n.

Then for every n, ak(en ∗ f ) = an(ek)an( f ) = 0 for all k. By the first part of proof, en ∗ f = 0

everywhere. Thus, f , as a limit of en ∗ f in L1, is zero almost everywhere.

Corollary 3.1.
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Theorem 3.5 (Unicity Theorem). Let µ be Borel measure on T. The Fourier-Stieltjes coeffi-

cients of µ are defined to be

µ̂(n) = an(µ) =

∫

e−inxdµ(x).

If µ̂(n) = 0 for all n, then µ is null.

Proof: Note that if f ∈ C(T ) and an( f ) = 0 for all n then f = 0. This is the weakest

Unicity theorem of all. We use this version and the Riesz theorem to prove the strongest

version as stated in the theorem.

For g ∈ C(T ), define the convolution

µ ∗ g(eix) =

∫

g(ei(x−t))dµ(t).

We show that it is a continuous function. As usual, we write g(eix) as g(x) for simplicity.

Note that

|µ ∗ g(x + h) − µ ∗ g(x)| = |
∫

(g(x + h − t) − g(x − t))dµ(t)|

≤ ||g(· + h) − g(·)||C
∫

d|µ(t)|

= ||g(· + h) − g(·)||C ||µ||.
Since |µ|(T ) is finite and g is uniformly continuous, the last expression tends to zero as h→ 0.

The Fourier coefficients of µ ∗ g are an(µ ∗ g) = an(µ)
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Proof: Define the functional l(h) = (µ ∗ (ν ∗ h))(1) on C(T ). Clearly, it is linear. Observe

that ||ν ∗ h||∞ ≤ ||ν||||h||∞ for any measure ν ∈ M(T ) and h ∈ C(T ). Applying twice, we have

|l(h)| ≤ ||µ||||ν||||h||∞. Therefore, l is a continuous linear functional on C(T ). By the Riesz

theorem, there is γ ∈ M(T ) so that l(h) =
∫

h(e−it)dγ(t) = γ ∗ h(1) for all h ∈ C(T ). Then µ ∗ ν
is defined to be the measure γ ∈ M(T ). Moreover, ||µ ∗ ν|| ≤ ||µ||||ν||.
Theorem 3.7. M(T ) 2�
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which can be viewed as the value of (µ ∗ µ̃) ∗ hε(e
ix) at x = 0.



18 KECHENG ZHOU AND M. VALI SIADAT

4. The C
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which can be written as, if let (n + 1
2
)x = u,

2

∫ (n+ 1
2
)π

0

| sin u|
u

du.

We may disregard the parts of this integral over (0, π) and (nπ, (n+ 1
2
π), since the integrand is

bounded. In view of the periodicity of sin u, what remains can be written as

2

∫ nπ

π

| sin u|
u

du = 2

∫ π

0

sin u(

n−1
∑

k=1

1

u + kπ
)du.

For 0 ≤ u ≤ π, the sum is contained between 1
π

∑n
k=2

1
k

and 1
π

∑n−1
k=1

1
k
, and so is strictly of order

1
π

ln n. Collecting estimates, we obtain ||Dn||1 = 4
π2 ln n + O(1).

Theorem 4.2. There is a continuous function whose Fourier series diverges at a point.

Proof: Suppose it were true that S n(h) =
∑n
−n ak(h) has a limit (i.e. S n(h)(eix) converges

at x = 0) for any h ∈ C(T ). Then we would have |S n(h)| ≤ Mh for all n, where Mh is a

constant. For each n, S n is a linear functional on C(T ), given as S n(h) =
∫

h
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When we sum the geometric series and simplify, we find

Kn(e
ix) =

1

n
(
sin 1

2
nx

sin 1
2
x

)2.

Thus the Dirichlet and Fejér kernels are related by the formula

K2n+1(e
ix) =

1

2n + 1
D2

n(e
ix).

Note that Kn is an approximate identity on T. Thus for any f ∈ L1(T ), Kn ∗ f (eix) →
f (eix) at every point of of continuity of f , and the convergence is uniform over every closed

interval of continuity. In particular, Kn ∗ f tends to f uniformly everywhere if f is continuous

everywhere. It holds also that if f ∈ Lp, 1 ≤ p < ∞, then ||Kn ∗ f − f ||p → 0.

The functions Kn are trigonometric polynomials; this fact has interesting consequence.

(1) Since Kn’s are infinitely differentiable, any continuous function h is approximated

uniformly by the infinitely differentiable functions (in fact, trigonometric polynomi-

als) Kn ∗ h.

(2) We also obtain another proof of the Unicity theorem in L1(T ). Suppose that ak( f ) = 0

for all k. Then for each n, ak(Kn ∗ f ) = ak(Kn)an( f ) = 0,∀k. Thus the trigonometric

polynomial Kn ∗ f ≡ 0. Since ||Kn ∗ f − f ||1 → 0, f = 0 a.e.

The Poisson kernel

Define, for 0 < r < 1,

Pr(e
it) =

∞
∑

−∞
r|n|eint.

The series converges absolutely, and we can easily obtain that, if z = reiθ, 0 ≤ r < 1, then

Pr(e
i(θ−t))
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(2) Let f ∈ L1(T ). At every point t where f is the derivative of its integral (hence almost

everywhere) Pr ∗ f (eit) → f (eit) as r ↑ 1 (radial limit). Actually, for almost all t,

Pr ∗ f (eiθ) → f (eit) as reiθ → eit nontangentially. This result depends on particular

properties of the Poisson kernel, and is not true for all approximate identities.

Proof: We prove that Pr ∗ f (eix) is harmonic in D (open unit disk). If f is real, then Pr ∗ f

is the real part of
∫

eit + z

eit − z
f (eit)dσ(t),

which is an analytic function of z = reiθ in D. Hence Pr ∗ f (eiθ) is harmonic in D. Since linear

combinations of harmonic functions are harmonic, Pr ∗ f (eiθ) is a complex harmonic function

on D for any f ∈ L1(T ), the class of all complex, Lebesgue integrable functions on T.

Theorem 4.4. Suppose f ∈ L1(T ) and f ≥ 0. Then f is the boundary function of a nonneg-

ative harmonic function. If f is bounded, it is the boundary function of a harmonic function

with the same bounds.

Proof: Let F(z) = Pr ∗ f (eix). Then F(z) is harmonic in D such that limr↑1 F(reiθ) = f (eiθ)

for a.e. θ. Since Pr is nonnegative, F(z) is certainly positive whenever f is nonnegative. If

| f | ≤ M, then ||Pr ∗ f ||∞ ≤ M||Pr||1 = M.

Theorem 4.5. A harmonic function F in D (open disk) is bounded if and only if it is the

Possion integral of some bounded function f on T.

Proof: We need only to show the necessity. Let F be harmonic and bounded in D. Let

rn ounded 〉n≤th= r
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This can be verified by considering the representation theorem of harmonic functions in disk

: If u is real, continuous on |z| ≤ ρ and harmonic in |z| < ρ, then for z = ρ1e
iθ, ρ1 < ρ,

u(ρ1e
iθ) =

1

2π

∫ 2π

0

Re[
ρeit + z

ρeit − z
]u(ρeit)dt.

Let ρ1 = rρ (Note 0 ≤ r < 1). Then

u(rρeiθ) =
1

2π

∫ 2π

0

Re[
eit + reiθ

eit − reiθ
]u(ρeit)dt =

1

2π

∫ 2π

0

Pr(e
i(θ−t))u(ρeit)dt.

For complex harmonic, we consider it as a sum of real part and imaginary part.

5. Summability; Metric Theorems

We have shown the following theorems in the last section:

Theorem 5.1. The Poisson integral (Pr ∗ f )(eiθ) provides the harmonic extension of f ∈ L1(T )

to the interior of the circle so that

(1) If f ∈ C(T ), then Pr ∗ f converges to f uniformly as r → 1.

(2) If f ∈ Lp(T ) with 1 ≤ p < ∞, then ||Pr ∗ f − f ||p → 0 as r ↑ 1.

(3) Let f ∈ L1(T ).
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Theorem 5.3. A harmonic function F in D (open disk) is bounded if and only if it is the

Possion integral of some bounded function f on T.

Proof: We need only to show the necessity. Let F be harmonic and bounded in D. Let

rn ↑ 1 and write fn(e
it) = F(rne

it). The sequence fn is a bounded sequence in L∞(T ); hence for

some sequence n j → ∞, fn j
converges in the weak-* topology (L∞(T
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Proof: Suppose that F is real. Since D is a simply connected region, F has a harmonic

conjugate G so that H = F + iG is analytic in D. We write H(z) =
∑∞

n=0 anz
n. Then

H(z) = Re(H) = a0 +
1

2

(
∞

∑

n=1

anr
neinθ +

∞
∑

n=1

anr
ne−inx

)

= a0 +
1

2

∞
∑

n=−∞
anr
|n|einθ

where a−n = an for n = 1, 2, · · · . If F is complex, then it is linear combination of two real
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for each h ∈ C(T ). In particular, for each n, an( fr j
) → an(µ) as j → ∞. On the other hand,

an( fr) = anr
|n| → an as r ↑ 1. Therefore, an(µ) = an for all n.

It follows from the Unicity theorem that µ is uniquely determined by an, therefore by F,

and that since an( fr) = anr
|n| = anµr|n| = an(Pr ∗ µ), fr = Pr ∗ µ, i.e. F(reix) = Pr ∗ µ(eix).

We show that ||µ|| = limr↑1 Ar. Note that µ = lim j→∞ F(r je
ix)dσ(x) in the weak* topology

of M(T ) as the dual of C(T ). It follows that ||µ|| ≤ lim inf j→∞ Ar j
where Ar j

= ||
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Let x be a point where the above limit holds, i.e., at x
∫ t

0

( f (x + u) + f (x − u) − 2 f (x))du = o(t).

Let G(t) =
∫ t

0
( f (x + u) + f (x − u) − x
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In particular, if limu→x f (u) = L, then

lim
n→∞

∫ π

−π
f (x − u)en(u)dσ(u)→ L.

Proof: If en is even, then

I =

∫ π

−π
f (x − u)en(u)dσ(u) − f (x+) + f (x−)

2

=

∫ π

0

(

f (x + u) + f (x − u) − f (x+) − f (x−)

)

en(u)dσ(u).

Given ε > 0, there exists δ > 0 such that for 0 < u ≤ δ, | f (x + u) − f (x+)| < ε and

| f (x − u) − f (x−)| < ε. We write

I =

(

∫ δ

0

+

∫ π

δ

)

( f (x + u) − f (x+) + f (x − u) − f (x−))en(u)dσ(u) = I1 + I2.

For I1, we have

|I1| ≤ 2ε

∫ π

0

en(u)dσ(u) = 2ε.

For I2, we have

|I2| ≤ 4M

∫ π

δ

en(u)dσ(u) < ε,

for sufficiently large n.

An alternative proof of the above theorem.

Proof: First, we make the following assumptions successively:

(1) We may assume that x = 0 is the point where

lim
t→0

1

2t

∫ x+t

x−t

f (u)du = f (x).

That is,

lim
t→0

1

2t

∫ t

−t

f (u)du = f (0).

Assume that the limit holds for f at x = a. Then g(x) = f (x + a) satisfies

lim
t→0

1

2t

∫ t

−t

g(u)du = g(0).

If the theorem is proved for g at 0, then (pr∗g)(0)→ g(0) is simply (pr∗ f )(a)→ f (a).

(2) We may also assume that f (0) = 0. Let g(x) = f (x) − f (0). Then g(0) = 0. If the

theorem is proved for g, then (pr ∗ g)(0) → 0) is simply (Pr ∗ ( f (·) − f (0))(0) =

(pr ∗ f )(0) − f (0)→ 0, which is (pr ∗ f )(0)→ f (0).
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(3) Finally, we may assume that

∫

f (x)dσ(x) = 0. Let g be a smooth function with
∫

g =

∫

f , and vanishing on a neighborhood of x = 0 (maintaining the above two
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has a bell-shaped majorant

K∗n(x) =
2π2n

1 + n2x2
.

Proof: The first formula for Kn gives Kn(x) ≤ n (used for smaller x). By Jordan’s in-

equality, the second formula leads to Kn(x) ≤ π2

nx2 (used for large x). Combining these two

gives Kn(x) ≤ K∗n(x), where K∗n(x) = 2π2n

1+n2 x2 (consider |x| ≤ 1
n

and |x| > 1
n

separately).

Theorem 6.2. Let f ∈ L1 and let x be such a point where

lim
t→0

1

t

∫ t

0

| f (x + u) + f (x − u) − 2L|du = 0

for some L (Note that if f ∈ L1
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Proof: Let x = 0 be a point where

lim
u→0

µ([−u, u))

2u
= 0.

We show that

(pr ∗ µ)(0) =

∫ π

−π
pr(u)dµ(u)→ 0, r ↑ 1.

Let F(t) =

∫ t

−π
dµ(v). Then, by Fubini’s theorem,

∫ π

−π
p′r(u)F(u)du =

∫ π

−π
p′r(u)

∫ u

−π
dµ(v)du

=

∫ π

−π

∫ π

v

p′r(u)dudµ(v)

=

∫ π

−π
(pr(π) − pr(v))dµ(v)

= pr(π)µ([−π, π)) +

∫ π

−π
pr(v)dµ(v).

It follows that
∫ π

−π
pr(v)dµ(v) =

∫ π

−π
p′r(u)F(u)du − pr(π)µ([−π, π)).

For the last integral, noting that p′r is odd, we have
∫ π

−π
p′r(u)F(u)du =

∫ π

0

p′r(u)(F(u) − F(−u))du

=

∫ π

0

2up′r(u)
µ([−u, u))

2u
du

→ lim
u→0

µ([−u, u))

2u
= 0, r ↑ 1.

7. Herglotz’ Theorem

Definition 7.1. A complex sequence {un}∞n=−∞ is called positive definite if
∑

m,n

um−ncmcn ≥ 0

for every sequence {cn}∞n=−∞ such that cn = 0 except for a finite number of n.

Theorem 7.1. Let µ be any positive measure on [0, 2π). Set

un =

∫

e−inxdµ(x).
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so |F(ϕ)| ≤ k. Thus F
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Claim: A is a Banach algebra under multiplication (the product of f and g is defined as f g)

in the norm inherited from l1.

Proof: Let f ∈ A. || f || = || f ||A = ||{an( f )}||l1 . Then A is a normed linear space. We prove

that A is complete. Let fk be a Cauchy sequence in A, that is, {an( fk)} is a Cauchy sequence

in l1. Assume that this sequence converges to {bn} ∈ l1. Let f =
∑

bne
inx. Then f ∈ A and

|| fk − f || = ||{an( fk) − bn}||l1 → 0.

To prove that A is a Banach algebra, we prove first that if both f and g are in A, then so is

f g. Note that if f (eix) =
∑

ak( f )eikx and g(eix) =
∑

a j(g)ei jx, then

f (eix)g(eix) = (
∑

ak( f )eikx)(
∑

a j(g)e−i jx)

=
∑

k, j

ak( f )a j(g)ei(k− j)x =
∑

cle
ilx,

where

cl =
∑

k

ak( f )ak−l(g).

If ak( f ), a j(g) ∈ l1, then cl converges absolutely for every l. Moreover, since {cl} is the con-

volution of {ak( f )} and {a j(g)} ∈ l1, {cl} ∈ l1 (like that in L1) and f g ∈ A. Secondly, we

verify that || f g|| ≤ || f ||||g||. Note that the inequality actually says that ||a ∗ b||l1 ≤ ||a||l1 ||b||l1 for

a, b ∈ l1. But it is true just like in L1.

Claim: Define for all ϕ =
∑

cne
inx ∈ A,

F(ϕ) =
∑

cnun.

Then F(|ϕ|2) ≥ 0 for each ϕ ∈ A.

We need to justify this definition first. Note that |un| ≤ u0 for all n. Thus
∑

cnun converges

absolutely so that F(ϕ) is well-defined for all ϕ ∈ A.

Next, we show F(|ϕ|2) ≥ 0 for all ϕ ∈ A. Note that |ϕ|2 = ϕϕ ∈ A. By definition of F,

F(|ϕ|2) =
∑

k, j

ak(ϕ)a j(ϕ)uk− j.

(The coefficient of u0 is
∑ |ak(ϕ)|2). If ak(ϕ)’s are zeros except for finitely many k, then

∑

k, j ak(ϕ)a j(ϕ)uk− j ≥ 0.Hence F(|ϕ|2) ≥ 0 as long as the sum that evaluates F(|ϕ|2) converges,

which is indeed the case because un’s are bounded.

Claim: If ψ ∈ A and ψ > 0 (strictly positive!), then ψ = |ϕ|2 for some ϕ ∈ A. Hence,

F(ψ) ≥ 0 for all ψ ∈ A and ψ > 0.
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Proof: Note that
√

z is analytic on the right-half (open) plane that contains the range of ψ

(ψ > 0) and ψ
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In addition, Bessel’s inequality gives

||T f ||2 ≤ || f ||2.
Given p with 1 ≤ p ≤ 2, let 0 ≤ θ ≤ 1 be such that

1

p
=

1 − θ
1
+
θ

2
.

By the Riesz-Thorin theorem, we have

||T f ||q ≤ || f ||p, ∀ f ∈ Lp,

where q is given by
1

q
= 1 − 1

p
.

It is worth noting that we couldn’t get the best constant in the Hausdorff- Young inequality.

Beckner proved (Annals of Math, 102(1975)) for the Fourier transforms on R that

|| f̂ ||q ≤

√

p1/p

q1/q
|| f ||p.

The following proof of the Hausdorff-Young inequality is due to A.P.Calderon and A. Zyg-

mund. It suffices to show that for any trigonometric polynomial f with Fourier coefficients

c = (cn) and || f ||p = 1 we have ||c||q ≤ 1. Using the duality, we see that it suffices to show that

|
∑

cndn| ≤ 1

for every sequence d with ||d||p = 1.

Put f (t) = F(t)1/pE(t) for t ∈ T such that F(t) = | f (t)|p ≥ 0 and |E(t)| = 1. (E(t) =

exp{iarg( f (t))}. In case f (t) = 0, simply define E(t) = 1). Similarly, put dn = D
1/p
n en with

Dn ≥ 0 and |en| = 1.



FOURIER SERIES 37

Since the sum has only finitely many terms, each one (as function of z) is bounded in the

strip 1
2
≤ Rez ≤ 1. Hence Q(z) is bounded in this strip with bound depending on d′ns and f .

For Rez = 1, we have

|Q(1 + it)| ≤
∑

Dn

∫

F(t)dt = 1.

For Rez = 1
2
, the Schwarz inequality gives

|Q(
1

2
+ iθ)| ≤ (

∑

Dn)
1/2(

∑

|
∫

F(t)
1
2
+iθE(t)e−intdt|2)1/2.
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For any h ∈ Lp, by the Hölder and Hausdorff-Young inequalities,

|
∫ π

−π
h(t)sn(t)dσ| = |

n
∑

k=−n

ĥ(k)ck|

≤ (

n
∑

k=−n

|ĥ(k)|q)1/q(

n
∑

k=−n

|ck|p)1/p

≤ ||h||q||c||p ≤ ||h||p||c||p.
This implies that ||sn||q ≤ ||c||p for all n. Note that this is valid for any c ∈ lp. We have

||sm − sn||q = ||
∑

n<|k|≤m

cke
ikx||q ≤

∑

n<|k|≤m

|ck|p.

Therefore, sn is a Cauchy sequence in Lq and hence there exists an f ∈ Lq so that ||sn− f ||q →
0.We simply define (T ∗c)(t) = f (t).Note that T ∗ is an adjoint operator to T , the finite Fourier

transform, in the sense that

< T (h), c >=< h, T ∗(c) >,

for all h ∈ Lp and c ∈ lp, where < T (h), c >=
∑

ĥ(k)ck and < h, T ∗(c) >=

∫

h(t) f (t)dt with

f defined as the Lq limit of sn.

Moreover, for each k and for any n > |k|, by Hölder’s inequality,

| f̂ (k) − ck| = |
∫

( f (t) − sn(t))e
−iktdσ| ≤ || f − sn||q.

Therefore, f̂ (k) = ck.

Remarks:

(1) The case p = 2 is the theorem of Riesz-Fischer.

(2) The case p = 1, to every c ∈ l1 we may assign the continuous function f (t) =
∑

cke
ikt.

Since the series converges uniformly, ck = f̂ (k) and || f ||C ≤ ||c||1.
(3) The restriction of the theorem to 1 ≤ p ≤ 2 is essential. For there is a sequence c ∈ lq

for all q > 2 and yet is not the finite Fourier transform of any function in L1.

The series
∑

±n−1/2 cos nx,

with a suitable choice of signs, is a desired example as shown by the following theo-

rem: If
∑

(a2
n + b2

n) diverges, then almost all the series
∑

rn(t)(an cos nx + bn sin nx)

are not Fourier series (because almost all the series are almost everywhere non-Fejér

summable).
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Theorem 8.4. The restriction of the Hausdorff-Young inequality to 1 ≤ p ≤ 2 is essential, for

there is a continuous function f ∈ C (hence f ∈ Lp for all p > 0) such that || f̂ ||q = ∞ for all

q < 2. Therefore, it is impossible that for some p > 2, we would have || f̂ ||q ≤ || f ||p for f ∈ Lp.

Proof: The construction of the desired function follows from the following theorem (see
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We now turn to the general case. Put

g(z) = M1−z
0

Mz
1
,

where M
ζ

i
= exp{ζ log Mi} for complex ζ. Then g(z) is entire, g has no zero, 1/g is bounded

in the closed strip,

|g(it)| = M0, |g(1 + it)| = M1,

and hence f /g satisfies our previous assumptions. Thus | f /g| ≤ 1 in the strip, and this gives

| f (θ + it)| ≤ M1−θ
0

Mθ
1

for all 0 ≤ θ ≤ 1.

An Alternative Proof:

Let ε > 0 and λ ∈ R. Define

Fε(z) = exp{εz2 + λz}F(z).

Then

Fε(z)→ 0, as Imz→ ±∞
and

|Fε(it)| ≤ M0, |Fε(1 + it)| ≤ M1e
ε+λ.

By the Phragmen-Lindelöf principle we therefore obtain

|Fε(z)| ≤ max{M0,M1e
ε+λ}.

That is,

|F(θ + it)| ≤ exp{−(θ2 − t2)}max{M0e
−θλ,M1e

(1−θ)λ+ε }.
This holds for any fixed θ and t. Letting ε → 0 we conclude that, if ρ = exp{λ},

|F(θ + it)| ≤ max{M0ρ
−θ,M1ρ

1−θ}.

9. A Theorem ofMinkowski

Let

T 2 = {(ei2πx, ei2πy) : x, y ∈ R}.
T 2 is called the 2-dimensional torus, which is the Cartesian product of the unit circle T =

{ei2πx : x ∈ R}.

Let (m, n) be a lattice (integer coordinates) point in the plane and let f (x, y) be a summable

function on the unit square

E = {(x, y) : 0 < x < 1, 0 < y < 1
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We may prove the Parseval relation on
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The last equality is simply the result of change of variables. For the one above the last

equality, we denote by E−m,−n the square with the lower left corner (−m,−n). Then we have:
∫ ∫

R2

φ(2x, 2y)e−2πi(mx+ny)dxdy

=
∑

m,n

∫ ∫

E−m,−n

φ(2x, 2y)e−2πi(mx+ny)dxdy

=
∑

m,n

∫ ∫

E

φ(2(x − m), 2(y − n))e−2πi(mx+ny)dxdy

=

∫ ∫

E

∑

m,n

φ(2(x − m), 2(y − n))e−2πi(mx+ny)dxdy.

On the other hand, we calculate
∫ ∫

E
| f (x, y)|2dxdy.

∫ ∫

E

| f (x, y)|2dxdy =

∫ ∫

E

f (x, y)
∑

m,n

φ(2(x − m), 2(y − n))dxdy

=

∫ ∫

R2

f (x, y)φ(2x, 2y)dxdy

=

∫ ∫

R2

∑

m,n

φ(2(x − m), 2(y − n))φ(2x, 2y)dxdy

=
∑

m,n

∫ ∫

R2

φ(2(x − m), 2(y − n))φ(2x, 2y)dxdy

= 2−d
∑

m,n

∫ ∫

R2

φ(x − 2m, y − 2n)φ(x, y)dxdy

= 2−d
∑

m,n

∫ ∫

C

φ(x − 2m, y − 2n)dxdy.

The Parseval relation gives rise to

2−2d|
∫ ∫

C

φ(x, y)e−πi(mx+ny)dxdy|2 == 2−d
∑

m,n

∫ ∫

C

φ(x − 2m, y − 2n)dxdy.

If C contains no lattice point except the origin, then one can show that for (x,
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Theorem 9.2. If C is a convex body in Rd of volume V = 2d and symmetric about the origin,

then there is a lattice point (m, n) , (0, 0) in C or on its boundary.

Proof: Assume that, by a contradiction, C contains no lattice point other than the origin.

We assume that C is bounded. Thus C is compact and there is δ > 0 such that d(p,C) ≥ δ > 0

for all lattice points p other than the origin. We may expand C slightly to a subset D of Rd so

that D is convex and symmetric about origin and yet contains no lattice point other than the

origin. Since the volume of D is > 2d, this is in contradiction to Minkowski’s theorem.

It remains to show the construction of D. Let

D = {x ∈ Rd : dist(x,C) ≤ δ

2
}.

We claim that if C is (closed) convex, then so is D. Let x and y ∈ D (Assume that they are not

in C. Otherwise, nothing needs to be done.) Let x0 and y0 ∈ C such that |x − x0| = dist(x,C)

and |y
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If |ad−bc| ≤ 1 then V ≥
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where mn(x) is the nth power of m with respect to ordinary multiplication. We prove this with

n = 2. Using the Cauchy product of two series, we have
∫

m2(x)e−ikxdσ(x) =

∫

(
∑
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Proof: (1). Prove that
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where Φ(r, s, t) = φ(t − r)+ φ(r)− φ(t − s)− φ(s
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Let ψ ∈ l1(Z3) (sequence depending on three indices) be the Fourier transform of Ψ(r, s, t).

Thenψ∗n is the Fourier transform ofΨn (with respect to ordinary multiplication) and ||ψ∗n||l1(Z3) ≤
K4 for all n.

To see this, we first prove that

‖F (einΦ(r,s,t))‖l1(Z3) ≤ K4, ∀n.
Note that

einΦ(r,s,t) = einφ(t−r)einφ(r)e
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Obviously, h is a homomorphism of A(T ) into A(T ). Define a homomorphism of l1 into l1,

denoted by h′, in such a way that

h′(F f ) = F (h( f ))

for all f ∈ A(T ). This can be written as

h′(ρ) =
∑
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Theorem 10.4. Let h′ be any homomorphism of l1 into l1. Then there exists m : T → T so
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